Intended for Nelja Energia AS

Document type Report

Date 15/11/2016

Reference 1510023010

Madalsagedusliku ning infraheli uuringu tõlge asub KMH aruande ptk-s 5.11.2 "Infraheli ja madalsageduslik müra"

# HIIUMAA OFFSHORE WINDFARM, ESTONIA LOW FREQUENCY NOISE AND INFRASOUND SURVEY



#### HIIUMAA OFFSHORE WINDFARM, ESTONIA LOW FREQUENCY NOISE AND INFRASOUND SURVEY

Date15/11/2016Made byVille Virtanen, Veli-Matti Yli-KätkäChecked byJanne RistolainenDescriptionLow frequency noise and infrasound survey for the<br/>operation of Nelja Energia AS offshore wind farm in<br/>Hiiumaa, Estonia

Ref 1510023010

Ramboll Niemenkatu 73 FI-15140 LAHTI T +358 20 755 611 F +358 20 755 7801 www.ramboll.fi

#### CONTENTS

| 1   | FOREWORD                                            | 1 |
|-----|-----------------------------------------------------|---|
| 2.  | NOISE LIMIT VALUES                                  | 1 |
| 3.  | NOISE MODELLING                                     | 2 |
| 3.1 | Method                                              | 2 |
| 3.2 | Wind turbine information                            | 2 |
| 4.  | RESULTS                                             | 3 |
| 4.1 | Penalties due to tonality, amplitude modulation and |   |
|     | impulsivity                                         | 4 |
| 5.  | INFRASOUND FROM WIND TURBINES                       | 4 |
| 5.1 | Infrasound measurement results in literature        | 5 |
| 5.2 | Health effects                                      | 6 |
| 6.  | CONCLUSIONS                                         | 6 |
| 7.  | REFERENCES                                          | 7 |

#### Annex

1 Result tables

2 Coordinates of Hiiumaa wind turbines

## 1. FOREWORD

Nelja Energia AS is planning a wind farm to be located north from Hiiumaa, Estonia. Ramboll made a noise calculation for low frequency noise and infra sound. The objective of this noise survey project was to investigate the effects of low frequency noise and infra sound to the closest reference points on the coast of the Hiiumaa Island and on three points on the sea.

The project was assigned to Ramboll by Nelja Energia AS, the contact person was Siim Paist. Ramboll Project manager was Janne Ristolainen; the noise modelling has been conducted by Ville Virtanen and Veli-Matti Yli-Kätkä.

#### 2. NOISE LIMIT VALUES

The Minister of Social Affairs Regulation No 42 of 4 March 2002 establishes the noise limit values in residential and recreational areas and residential buildings. The limit values are applied in land use, traffic and construction planning and building permitting.

|                                           | Existing are           | as,                    | Planned new areas,     |                        |  |
|-------------------------------------------|------------------------|------------------------|------------------------|------------------------|--|
|                                           | Application            | level L <sub>Aeg</sub> | Application            | level L <sub>Aeg</sub> |  |
| Outdoors                                  | Daytime                | Night time             | Daytime                | Night time             |  |
|                                           | (07–23)                | (23–07)                | (07–23)                | (23–07)                |  |
| Category I: Natural recreation areas and  | 50 dB                  | 40 dB <sup>1)</sup>    | 45                     | 35                     |  |
| National parks, recreation and health     |                        |                        |                        |                        |  |
| authorities recreation areas              |                        |                        |                        |                        |  |
| Category II: Educational and day care     | 55 dB                  | 40 dB <sup>1)</sup>    | 50                     | 40                     |  |
| institutions, health care and social      |                        |                        |                        |                        |  |
| welfare institutions, residential and     |                        |                        |                        |                        |  |
| recreational areas and parks in cities or |                        |                        |                        |                        |  |
| towns                                     |                        |                        |                        |                        |  |
| Category III: Mixed area (residential and | 60 dB                  | 45 dB <sup>2)</sup>    | 55                     | 45                     |  |
| public buildings, commercial buildings,   |                        |                        |                        |                        |  |
| service and manufacturing companies)      |                        |                        |                        |                        |  |
| Category IV: Brownfield                   | 65                     | 55                     | 65                     | 55                     |  |
| Indoors                                   |                        |                        |                        |                        |  |
| Living and sleeping quarters              | 30 dB L <sub>Aeg</sub> | 25 dB L <sub>Aeg</sub> | 30 dB L <sub>Aeq</sub> | 25 dB L <sub>Aeq</sub> |  |
|                                           | . 1                    | 40 dB L <sub>max</sub> | · 1                    | 35 dB L <sub>max</sub> |  |

Table 1. Noise limit values for industrial sources stated in Minister of Social Affairs Regulation No 42

Low frequency noise is assessed if the overall noise level is very close to levels in Table 1 (but not exceeding it). The 1/3 octave band indoor noise levels are compared to recommended levels shown in Table 2 (recommended sound pressure levels for low frequency noise annoyance assessment for residential living and sleeping rooms). It is used for evaluation of low frequency noise in living rooms or other indoor spaces caused by heating systems, music in entertainment facilities or other low frequency noise sources.

Table 2. Recommended (unweighted) indoor sound pressure levels of low frequency noise stated in Minister of Social Affairs Regulation No 42

| 1/3               | 10 | 12,5 | 16 | 20 | 25 | 31,5 | 40 | 50 | 63   | 80 | 100 | 125 | 160 | 200 |
|-------------------|----|------|----|----|----|------|----|----|------|----|-----|-----|-----|-----|
| frequency         |    |      |    |    |    |      |    |    |      |    |     |     |     |     |
| band / Hz         |    |      |    |    |    |      |    |    |      |    |     |     |     |     |
| Night time        | 95 | 87   | 79 | 71 | 63 | 55,5 | 49 | 43 | 41,5 | 40 | 38  | 36  | 34  | 32  |
| $L_{\rm eq}$ , dB |    |      |    |    |    |      |    |    |      |    |     |     |     |     |

## 3. NOI SE MODELLI NG

#### 3.1 Method

Low frequency noise survey was conducted as set out in Finnish ministry of environments guidelines. The recommended values for low frequency noise in this project are as it is stated in The Minister of Social Affairs Regulation No 42.

Low frequency noise levels emitted from wind turbines were calculated at the potentially most relevant immission points shown in Figure 4. The calculations were made to 9 (A-I) immisson points that are located by the shore of Hiiumaa and 3 (J-L) of which are located in the Baltic Sea ~5 km from the shore. Low frequency noise inside buildings was estimated using airborne sound insulation values for buildings of residence façades that are stated in DSO 1284 calculation method. The insulation values stated in DSO 1284 calculation method are based on the sound insulation measurements conducted several residential buildings in Denmark 2008. The measurements and the insulation values are reported in the DELTA report *Measurements of Sound Insulation of Facades*. Sound insulation values stated in DSO 1284 are the best information available, as there is no equivalent information available from Estonia. Compared to Denmark the building types and materials may be different in Estonia, but the differences are considered to be small enough that the insulation values can be applied for this assessment.



Figure 1. Receiver point locations

#### 3.2 Wind turbine information

The Hiiumaa wind farm was modelled using Siemens SWT-4,0-130 turbine model with a hub height of 110 metres.

For Siemens SWT-4,0-130 turbine model 1/3-octave bands noise emission data's between 10 - 160 Hz were used as provided by Siemens. The band of 200 Hz was calculated by extrapolation. According to the manufacturer's data provided, the Siemens SWT-4,0-130 with standard setting produces a total sound power level of 110.0 dB on wind speed of 8 m/s at 10 m reference height.

Lower sound power levels can be achieved with the SWT-4.0-130 wind turbine by controlling the turbine in noise restricted operation (noise modes from "Setting -1 dB" to "Setting -6 dB").



Figure 3 shows the one-third octave band sound power levels produced by the turbine model used in the noise modelling.

Figure 2. One-third octave band sound power levels of Siemens SWT-4.0-130 Wind Turbine

The noise data was obtained from documents "Contract Acoustic Emission, SWT-4.0-130, Rev. 0, Hub Height 90.0 m. Document ID: E W EN OEN DES TLS, Bo Schou Nelsen / 2014.08.04" and "Standard Acoustic Emission, SWT-4.0-130, rev. 0, Hub Height 110.0 m. Document ID: E W EN OEN DES TLS 7-10-0000-0885-00, Melek Sarigötz / 2013.04.05"

## 4. **RESULTS**

The calculated low frequency indoor noise levels (the sound insulation of the building taken into account) were below the recommended indoor low frequency noise levels at all receiver locations.





The results are shown also in tables in Annex 1.

The results show that the low frequency noise from wind turbines can be audible at certain weather conditions, but that the levels are well below the recommended values at the shore of Hiumaa.

4.1 Penalties due to tonality, amplitude modulation and impulsivity According to the document "Environmental Administration Guidelines 2 | 2014 Modelling of wind turbine noise" published by Finnish Ministry of the Environment, the effects of impulsivity and amplitude modulation are already included into the warranted level given by the wind turbine manufacturer. However, if it is known that the turbine model produced tonal noise and it can be estimated that these characteristics are audible in the immission points, the penalty for the tonality (e.g. 5 dB) can be added to the sound power level reported by the manufacturer. The tonality is estimated according to the guideline given by the Finnish Ministry of the Environment (Environmental Administration Guidelines 4 | 2014 Measurement of wind turbine noise levels in exposed areas).

As the wind turbine manufacturers of the turbine models used in this survey have not reported that their turbines produce tonal noise, the sanction for tonality is not applied in the results. The tonality can only be estimated after the wind farm has been build and the possible penalty for the tonality can be added into the sound pressure levels used in the modelling. However, according to the information available the penalties due to tonality are unlikely.

## 5. INFRASOUND FROM WIND TURBINES

Infrasound is usually determined as sound below a frequency of 20 Hz. Infrasound is excited by a wide range of natural sound sources such as wind, waterfalls and waves on the coastline. Human activity also causes infrasound and the sound sources vary from vehicles and industrial processes to air conditioning and wind farms.

The hearing threshold is standardized between 20 and 20 000 Hz but not for infrasound (frequencies below 20 Hz). This may have caused the common incorrect assumption that human hearing is incapable to sense infrasound.

There have been many studies on the low frequency threshold of human hearing. These studies have determined the lowest levels which are audible to an average person with normal hearing all the way down to 1.5 Hz. Figure 2 shows different hearing thresholds suggested. The results vary but are parallel: We are capable to hear infrasound if the sound pressure level is high enough. Tonality is lost below around 16-18 Hz and consequently a key element of perception is lost.



Figure 5. Different hearing thresholds suggested. (Hearing at low and infrasound frequencies, Møller et al, 2004)

#### 5.1 Infrasound measurement results in literature

Field measurements were made in a Japanese research project in the noise immission areas around several wind farms across Japan. Figure 6 shows a composition of these results. It is seen from the results that the frequency components below 20 Hz of almost all measuring points are much lower than the hearing or sensation thresholds.



# Figure 6. Measurement results at 164 points around 29 wind farms in Japan. (Assessment of wind turbine noise in immission areas, H. Tachibana et al, 2013)

Figure 7 shows infrasound measurement results for noise caused by natural sources and wind farm. The wind farm consists of 29 wind turbines with rated capacity of 2.1 MW (model REpower MM82). The green line in the pictures is the infrasound level of 85 dB(G) that is a common audibility threshold limit for infrasound. Figure shows that the infrasound caused by wind farm was slightly higher than the levels created by natural sources. However, all the measured levels from different sources were well below the hearing threshold.



Figure 7. Measured levels of infrasound (0.8 Hz to 20 Hz) from different sound sources. (Measurement and level of infrasound from wind farms and other sources, C. Turnbull et al, 2012)

#### 5.2 Health effects

The health effects of environmental noise are transmitted through sense of hearing. Other health effects are mainly a result of noise annoyance or sleep disturbance. In other words, if the noise is not audible there are no effects. Often in the public debate it is only spoken about the presence of infrasound and the low levels are forgotten or ignored.

Health Canada initiated in 2012 a cross-sectional epidemiological study to investigate the prevalence of health effects or health indicators among a sample of Canadians exposed to wind turbine noise using both self-reported and objectively measured health outcomes. The results were published in 2015. No association of measured or self-reported health effects and wind turbine noise was observed. Statistically significant exposure-response relationships were observed between increasing wind turbine noise levels and an increase in the prevalence of long term high annoyance towards several wind turbine features, including: noise, shadow-flicker, visual impacts, blinking lights and vibrations. This also suggests that if the noise is not audible there are no effects.

#### 6. CONCLUSIONS

According to noise modelling, the low frequency noise from wind turbines can be audible at certain weather conditions, but that the levels are well below the recommended values at the shore of Hiiumaa. The measurements conducted in the surroundings of Finnish wind turbine areas and the estimation of the noise calculation error suggest that approximately two times out of three the calculations give values greater than what would be achieved with noise measurements.

Wind turbines are one of many sources of infrasound around us. However, the level of infrasound caused by wind turbines is in nearly all occasions well below the audibility threshold. The infrasound exists in urban and natural environments at similar levels to the infrasound measured close to wind turbines.

## 7. REFERENCES

DSO 1284 "Statutory Order on Noise from Wind Turbines" Measurements of Sound Insulation of Facades. DELTA AV 1097/08, 30. April 2008 A review of published research on low frequency noise and its effects, G. Leventhall, 2003 Hearing at low and infrasound frequencies, Møller et al, 2004 Measurement and level of infrasound from wind farms and other sources, C. Turnbull et al, 2012 What is infrasound? G. Leventhall, 2007 Assessment of wind turbine noise in immission areas, H. Tachibana et al, 2013 Wind Turbine Noise and Health Study, Michaud et. al, Health Canada, 2015

#### Annex 1

#### Outdoor noise levels, dB

|                       | 1/3 frequency band / Hz |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-----------------------|-------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Receptor              | 10                      | 12,5 | 16   | 20   | 25   | 32   | 40   | 50   | 63   | 80   | 100  | 125  | 160  | 200  |
| А                     | 58,8                    | 53,6 | 49,6 | 47,2 | 45,8 | 43,8 | 42,8 | 40,9 | 39,1 | 38,4 | 35,6 | 32,8 | 27,8 | 23,2 |
| В                     | 57,8                    | 52,6 | 48,6 | 46,2 | 44,7 | 42,7 | 41,5 | 39,6 | 37,6 | 36,6 | 33,4 | 29,8 | 23,7 | 17,5 |
| С                     | 50,8                    | 45,6 | 41,6 | 39,2 | 37,7 | 35,6 | 34,3 | 32,3 | 30,0 | 28,9 | 25,1 | 20,8 | 13,6 | 6,1  |
| D                     | 58,3                    | 53,1 | 49,1 | 46,7 | 45,2 | 43,2 | 42,0 | 40,1 | 38,1 | 37,2 | 33,9 | 30,4 | 24,3 | 18,3 |
| E                     | 59,1                    | 53,9 | 49,9 | 47,5 | 46,1 | 44,1 | 42,9 | 41,0 | 39,1 | 38,4 | 35,3 | 32,1 | 26,5 | 21,2 |
| F                     | 59,8                    | 54,6 | 50,6 | 48,2 | 46,8 | 44,8 | 43,7 | 41,8 | 40,0 | 39,3 | 36,4 | 33,3 | 27,9 | 22,7 |
| G                     | 59,3                    | 54,1 | 50,1 | 47,7 | 46,3 | 44,3 | 43,2 | 41,3 | 39,5 | 38,8 | 35,9 | 32,8 | 27,6 | 22,5 |
| Н                     | 57,3                    | 52,1 | 48,1 | 45,7 | 44,2 | 42,1 | 40,9 | 38,9 | 36,8 | 35,9 | 32,5 | 28,8 | 22,6 | 16,4 |
| 1                     | 56,0                    | 50,8 | 46,8 | 44,4 | 42,8 | 40,7 | 39,5 | 37,4 | 35,3 | 34,2 | 30,7 | 27,0 | 20,7 | 14,3 |
| J (offshore receptor) | 60,5                    | 55,3 | 51,3 | 48,9 | 47,6 | 45,6 | 44,6 | 42,7 | 41,0 | 40,4 | 37,6 | 34,8 | 29,8 | 25,0 |
| K (offshore receptor) | 58,5                    | 53,3 | 49,3 | 46,9 | 45,5 | 43,5 | 42,3 | 40,4 | 38,5 | 37,8 | 34,8 | 31,7 | 26,4 | 21,3 |
| L (offshore receptor) | 60,3                    | 55,1 | 51,1 | 48,7 | 47,3 | 45,4 | 44,3 | 42,5 | 40,7 | 40,1 | 37,4 | 34,6 | 29,6 | 25,0 |

#### Indoor noise levels, dB

|                       |      |      |      |      |      | 1/   | '3 frequen | cy band / | Hz   |      |      |      |      |      |
|-----------------------|------|------|------|------|------|------|------------|-----------|------|------|------|------|------|------|
| Receptor              | 10   | 12,5 | 16   | 20   | 25   | 32   | 40         | 50        | 63   | 80   | 100  | 125  | 160  | 200  |
| A                     | 53,9 | 47,7 | 45,0 | 40,6 | 37,4 | 33,0 | 31,4       | 27,9      | 22,5 | 18,7 | 14,4 | 12,6 | 6,6  | 2,0  |
| В                     | 52,9 | 46,7 | 44,0 | 39,6 | 36,3 | 31,9 | 30,1       | 26,6      | 21,0 | 16,9 | 12,2 | 9,6  | 2,5  | -3,7 |
| С                     | 52,0 | 45,8 | 43,1 | 38,7 | 35,3 | 30,9 | 29,0       | 25,4      | 19,6 | 15,4 | 10,3 | 7,3  | -0,6 | -7,7 |
| D                     | 53,4 | 47,2 | 44,5 | 40,1 | 36,8 | 32,4 | 30,6       | 27,1      | 21,5 | 17,5 | 12,7 | 10,2 | 3,1  | -2,9 |
| E                     | 54,2 | 48,0 | 45,3 | 40,9 | 37,7 | 33,3 | 31,5       | 28,0      | 22,5 | 18,7 | 14,1 | 11,9 | 5,3  | 0,0  |
| F                     | 54,9 | 48,7 | 46,0 | 41,6 | 38,4 | 34,0 | 32,3       | 28,8      | 23,4 | 19,6 | 15,2 | 13,1 | 6,7  | 1,5  |
| G                     | 54,4 | 48,2 | 45,5 | 41,1 | 37,9 | 33,5 | 31,8       | 28,3      | 22,9 | 19,1 | 14,7 | 12,6 | 6,4  | 1,3  |
| Н                     | 52,4 | 46,2 | 43,5 | 39,1 | 35,8 | 31,3 | 29,5       | 25,9      | 20,2 | 16,2 | 11,3 | 8,6  | 1,4  | -4,8 |
| 1                     | 51,1 | 44,9 | 42,2 | 37,8 | 34,4 | 29,9 | 28,1       | 24,4      | 18,7 | 14,5 | 9,5  | 6,8  | -0,5 | -6,9 |
| J (offshore receptor) | -    | -    | -    | -    | -    | -    | -          | -         | -    | -    | -    | -    | -    | -    |
| K (offshore receptor) | -    | -    | -    | -    | -    | -    | -          | -         | -    | -    | -    | -    | -    | -    |
| L (offshore receptor) | -    | -    | -    | -    | -    | -    | -          | -         | -    | -    | -    | -    | -    | -    |
| LFN recommendation    | 95   | 87   | 79   | 71   | 63   | 55,5 | 49         | 43        | 41,5 | 40   | 38   | 36   | 34   | 32   |

## Coordinates of the Wind Turbines Siemens SWT-4,0-130

| E / Ion          | N / lat            | Z | hh  | E / Ion          | N / lat            | Z | hh  |
|------------------|--------------------|---|-----|------------------|--------------------|---|-----|
| 431440           | 6559524            | 0 | 110 | 440146           | 6559050            | 0 | 110 |
| 432019           | 6558679            | 0 | 110 | 440727           | 6558206            | 0 | 110 |
| 430860           | 6560368            | 0 | 110 | 437915           | 6564311            | 0 | 110 |
| 435598           | 6555506            | 0 | 110 | 438497           | 6563468            | 0 | 110 |
| 430281           | 6561213            | 0 | 110 | 437334           | 6565155            | 0 | 110 |
| 385899           | 6555103            | 0 | 110 | 438009           | 6566199            | 0 | 110 |
| 387567           | 6554083            | 0 | 110 | 438590           | 6565356            | 0 | 110 |
| 386692           | 6553355            | 0 | 110 | 439078           | 6562625            | 0 | 110 |
| 386299           | 6554223            | 0 | 110 | 441404           | 6559253            | 0 | 110 |
| 387232           | 6554923            | 0 | 110 | 136077           | 656/953            | 0 | 110 |
| 388528           | 6554729            | 0 | 110 | 430077           | 6560096            | 0 | 110 |
| 126275           | 6556552            | 0 | 110 | 440023           | 6561782            | 0 | 110 |
| 430273           | 6561717            | 0 | 110 | 437000           | 6560030            | 0 | 110 |
| 431337           | 4557204            | 0 | 110 | 440241           | 6560534            | 0 | 110 |
| 433093           | 6557390            | 0 | 110 | 437723           | 6560534            | 0 | 110 |
| 434334           | 0009084            | 0 | 110 | 434030           | 6560973            | 0 | 110 |
| 435114           | 6558240            | 0 | 110 | 435211           | 6560129            | 0 | 110 |
| 432117           | 6560570            | 0 | 110 | 434050           | 6561817            | 0 | 110 |
| 434437           | 655/193            | 0 | 110 | 432889           | 6563505            | 0 | 110 |
| 435018           | 6556350            | 0 | 110 | 433469           | 6562661            | 0 | 110 |
| 433857           | 6558038            | 0 | 110 | 435791           | 6559286            | 0 | 110 |
| 432697           | 6559726            | 0 | 110 | 432793           | 6561615            | 0 | 110 |
| 433277           | 6558882            | 0 | 110 | 433373           | 6560771            | 0 | 110 |
| 387897           | 6553253            | 0 | 110 | 437533           | 6556755            | 0 | 110 |
| 389182           | 6550027            | 0 | 110 | 436372           | 6558442            | 0 | 110 |
| 390142           | 6550045            | 0 | 110 | 436953           | 6557598            | 0 | 110 |
| 388212           | 6550009            | 0 | 110 | 440050           | 6557160            | 0 | 110 |
| 390876           | 6550804            | 0 | 110 | 435306           | 6562019            | 0 | 110 |
| 387231           | 6549991            | 0 | 110 | 439469           | 6558004            | 0 | 110 |
| 391090           | 6550062            | 0 | 110 | 438307           | 6559690            | 0 | 110 |
| 388578           | 6549202            | 0 | 110 | 438888           | 6558847            | 0 | 110 |
| 389494           | 6549243            | 0 | 110 | 435887           | 6561175            | 0 | 110 |
| 387655           | 6549160            | 0 | 110 | 438211           | 6557801            | 0 | 110 |
| 385782           | 6549076            | 0 | 110 | 438792           | 6556957            | 0 | 110 |
| 386722           | 6549118            | 0 | 110 | 437630           | 6558644            | 0 | 110 |
| 389345           | 6552366            | 0 | 110 | 436468           | 6560331            | 0 | 110 |
| 387463           | 6551658            | 0 | 110 | 437049           | 6559488            | 0 | 110 |
| 388224           | 6552433            | 0 | 110 | 400778           | 6558307            | 0 | 110 |
| 389075           | 6553154            | 0 | 110 | 401803           | 6557883            | 0 | 110 |
| 387081           | 6552500            | 0 | 110 | 399739           | 6558738            | 0 | 110 |
| 388547           | 6551621            | 0 | 110 | 395435           | 6560520            | 0 | 110 |
| 388867           | 6550819            | 0 | 110 | 396533           | 6560065            | 0 | 110 |
| 389879           | 6550811            | 0 | 110 | 402816           | 6557463            | 0 | 110 |
| 387840           | 6550827            | 0 | 110 | 406730           | 6555843            | 0 | 110 |
| 389613           | 6551586            | 0 | 110 | 394398           | 6559793            | 0 | 110 |
| 390661           | 6551550            | 0 | 110 | 405770           | 6556240            | 0 | 110 |
| 433954           | 6559928            | 0 | 110 | 403813           | 6557050            | 0 | 110 |
| 138103           | 6561579            | 0 | 110 | 403013           | 6556642            | 0 | 110 |
| 128083           | 6560736            | 0 | 110 | 404777<br>/03107 | 6558896            | 0 | 110 |
| 133703<br>437901 | 6562122            | 0 | 110 | 403177<br>A04005 | 6558270            | 0 | 110 |
| 136652           | 656/100            | 0 | 110 | 404220           | 6550122            | 0 | 110 |
| 127220           | 6562266            | 0 | 110 | 402140<br>102202 | 6550400            | 0 | 110 |
| 431237           | 6550000            | 0 | 110 | 400073           | 6550001            | 0 | 110 |
| 437000           | 6560000            | 0 | 110 | 401077           | 6557051            | 0 | 110 |
| 430303           | 0002220<br>6561277 | 0 | 110 | 400232           | 0007804<br>6550440 | 0 | 110 |
| 43/144           | 00013//            | 0 | 110 | 401973           | 0000049            | 0 | 110 |
| 435782           | 0003064            | U | 110 | 403005           | 00081/3            | U | 110 |

| E / Ion          | N / lat | Z | hh  |
|------------------|---------|---|-----|
| 398774           | 6560127 | 0 | 110 |
| 406219           | 6557348 | 0 | 110 |
| 407187           | 6556853 | 0 | 110 |
| 395464           | 6559401 | 0 | 110 |
| 406276           | 6554840 | 0 | 110 |
| 396492           | 6557023 | 0 | 110 |
| 405327           | 6555147 | 0 | 110 |
| 403413           | 6555766 | 0 | 110 |
| 404374           | 6555455 | 0 | 110 |
| 403954           | 6554281 | 0 | 110 |
| 408139           | 6556365 | 0 | 110 |
| 407678           | 6555450 | 0 | 110 |
| 408599           | 6557280 | 0 | 110 |
| 404888           | 6554061 | 0 | 110 |
| 409059           | 6558195 | 0 | 110 |
| 400633           | 6557499 | 0 | 110 |
| 401636           | 6557130 | 0 | 110 |
| 399621           | 6557872 | 0 | 110 |
| 396519           | 6559013 | 0 | 110 |
| 397563           | 6558628 | 0 | 110 |
| 402629           | 6556765 | 0 | 110 |
| 308512           | 6557351 | 0 | 110 |
| 102446           | 6556079 | 0 | 110 |
| 207512           | 6557675 | 0 | 110 |
| 205402           | 6550220 | 0 | 110 |
| 206505           | 6559001 | 0 | 110 |
| 402225           | 6560221 | 0 | 110 |
| 402323<br>20404E | 6500231 | 0 | 110 |
| 380843           | 6547379 | 0 | 110 |
| 38/004           | 6547460 | 0 | 110 |
| 380023           | 004/298 | 0 | 110 |
| 384374           | 6547136 | 0 | 110 |
| 385200           | 654/21/ | 0 | 110 |
| 388482           | 6547540 | 0 | 110 |
| 391/26           | 6547860 | 0 | 110 |
| 392532           | 654/939 | 0 | 110 |
| 390919           | 6547780 | 0 | 110 |
| 389296           | 654/620 | 0 | 110 |
| 390109           | 6547700 | 0 | 110 |
| 385436           | 6548155 | 0 | 110 |
| 386320           | 6548218 | 0 | 110 |
| 384548           | 6548091 | 0 | 110 |
| 390403           | 6549284 | 0 | 110 |
| 391303           | 6549324 | 0 | 110 |
| 387197           | 6548281 | 0 | 110 |
| 390662           | 6548529 | 0 | 110 |
| 391515           | 6548590 | 0 | 110 |
| 389803           | 6548467 | 0 | 110 |
| 388072           | 6548343 | 0 | 110 |
| 388940           | 6548405 | 0 | 110 |
| 392699           | 6547228 | 0 | 110 |
| 403794           | 6561135 | 0 | 110 |
| 401392           | 6561737 | 0 | 110 |
| 402691           | 6561880 | 0 | 110 |
| 408110           | 6558892 | 0 | 110 |
| 401554           | 6562647 | 0 | 110 |
| 402507           | 6561048 | 0 | 110 |
| 406673           | 6558471 | 0 | 110 |
| 407647           | 6557869 | 0 | 110 |
| 405674           | 6559089 | 0 | 110 |
| 403592           | 6560376 | 0 | 110 |

| E / Ion | N / lat | Z | hh  |
|---------|---------|---|-----|
| 404647  | 6559724 | 0 | 110 |
| 403074  | 6563599 | 0 | 110 |
| 404210  | 6562694 | 0 | 110 |
| 408576  | 6559921 | 0 | 110 |
| 393461  | 6547325 | 0 | 110 |
| 407055  | 6562948 | 0 | 110 |
| 401722  | 6563582 | 0 | 110 |
| 406125  | 6560349 | 0 | 110 |
| 407134  | 6559609 | 0 | 110 |
| 405081  | 6561116 | 0 | 110 |
| 402881  | 6562731 | 0 | 110 |
| 404001  | 6561909 | 0 | 110 |